2012 Consumer Confidence Report

Water System Name:	HMC GROUP COLD STORAGE	Report Date:	6-17-13
	ter quality for many constituents as required by		
the results of our monitor	oring for the period of January 1 - December 31,	2012 and may i	nclude earlier monitoring data.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Type of water source(s) in use:	GROUND WATER WELL	
Name & location of source(s):	WELL OI - LOCATED EAST OF MAIN OFFICE.	AT:
13138 S, BETHEL P	AVE. KINGSBURG, CA. 93631	
Drinking Water Source Assess	sment information: ASSESSMENT CONDUCTED AUGUST 31, 2	200 1 AND
	LE IN THE COLD STORAGE OFFICE,	
-	heduled board meetings for public participation: ANY COMMENTS	OR CONCERN

CAN BE REPORTED TO THE COLD STORAGE OFFICE DURING REGULAR BUSINESS HOURS,

For more information, contact: MIKE STALKEN Phone: (559) 897-2582

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds. reservoirs. springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Revised Jan 2013 2012 SWS CCR Form

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the California Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 7, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

TABLE 1 –	SAMPLING	RESULTS	SHOWING T	HE DETECT	TION OF C	COLIFORM BACTERIA
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of months in violation	MCL		MCLG	Typical Source of Bacteria
Total Coliform Bacteria	(In a mo.)	0	More than 1 sam month with a det		()	Naturally present in the environment
Fecal Coliform or E. coli	(In the year)	0	A routine sample and a repeat sample detect total coliform and either sample also detects feeal coliform or <i>E. coli</i>		()	Human and animal feeal waste
TABLE 2	– SAMPLIN	G RESUL	rs showing	THE DETE	CTION OF	LEAD AND COPPER
Lead and Copper (complete if lead or copper detected in the last sample set)	No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	10	ND	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natura deposits
Copper (ppm)	10	.080	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits: leaching from wood preservatives
	TABLE 3 -	- SAMPLI	NG RESULTS	FOR SODIU	JM AND H	ARDNESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	8-17-12	18 PPM		none	none	Salt present in the water and is generally naturally occurring
Hardness (ppm)	8-17-12	59 PPM		none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

^{*}Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report.

2012 SWS CCR Form Revised Jan 2013

TABLE 4 – DET	ECTION O	CONTAN	IINANTS WI	TH A <u>PRIN</u>	MARY DRIN	KING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
GROSS ALPHA	6-30-07	0.50 PC1/L		15 PC1/L	0	FROSION OF NATURAL DEPOSITS
ARSENIC	7-7-10	3.4 PPB		10 PPB	0.004	ENDSION OF NATURAL DEPOSITS RUNOFF FROM ORCHARDS; GLASS AND
TABLE 5 – DETE		CONTAMI	NANTS WIT	H A <u>SECO</u>	<u>NDARY</u> DR	INKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
TOTAL DISOLVED SOLIUS	2-18-11	140 PPM		1000 PPM		RUNOFF/LEACHING OF NATURAL DEPOSITS.
CHLORIDE	3-9-07	9.5 PPM	-	500 PPM		RUNOFF/LEACHING OF NATURAL DEPOSITS; SALTWATER INFLUENCE
	TABLE 6	– DETEC	TION OF UNI	REGULAT	ED CONTA	MINANTS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notific	ation Level	Health Effects Language
VANADIUM	6-24-03	36 PPB		50 A	0B	(SEE BELOW)

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [INSERT NAME OF UTILITY] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

HEALTH EFFELTS LANGUAGE FOR VANADIUM:
THE BUBIES OF SOME PRECNANT WOMEN WHO DRINK WATER CONTAINING VANADIUM IN EXCESS OF THE
NOTIFICATION LEVEL MAY HAVE AN INCREASED RISK OF DEVELOPMENTAL EXFECTS BASED ON STUDIES IN
LABORATORY ANIMALS.

2012 SWS CCR Form

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
FLUORIDE	7-7-10	0.14 PPM		2.0 PPM	/	EROSION OF NATURAL DEPOSITS; DISCHARGE FROM FERTILIZER AND ALUMINUM FALTURIES.
NITRATE	7-22-11	7.2 PPM		45 PPM		EROSION OF NATURAL PEPOSITS; RUNOFF/LEACHING FROM FERTILIZERS USE; LEACHING FROM SEPTIL TANKS!
	CTION OF	CONTAMI	NANTS WIT	H A <u>SECO</u>	<u>NDARY</u> DR	INKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
SULFATE	2-18-11	5.3 PPm		500 PPM		RUNOFF/LEACHING OF NATURAL DEPOSITS; INDUSTRIAL WASTE
IRON	3-9-07	.18 PPM		.3 PPM		LEACHING FROM NATURAL DEPOSITS; INDUSTRIAL WAS TE
	TABLE 6		TION OF UNI	REGULAT	ED CONTA	MINANTS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notifica	ntion Level	Health Effects Language

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [INSERT NAME OF UTILITY] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Revised Jan 2013

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
TURBIDITY	7-18-08	.170 UNITS		5 UNITS		SOIL RUNOFF
DBCP	2-21-13	.023 PPB		0.2 PPB		BANNED NEMATOCIDE THAT MAY STILL BE PRESCUTIN SOIL OUE TO RUNOFF/LEACH FROM FORMER USE ON SOYBEAN, COITON, VINEYARDS, TOMATOES, AND TREE FRUIT.
TABLE 5 – DETEC	CTION OF	CONTAMI	NANTS WIT	H A <u>SECO</u> I	<u>NDARY</u> DR	INKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
	TABLE 6	– DETECT	ION OF UNF	REGULAȚI	ED CONTAI	MINANTS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notifica	tion Level	Health Effects Language

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [INSERT NAME OF UTILITY] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Revised Jan 2013

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATIO	N OF A MCL, MRDL, AL,	TT, OR MONITORI	NG AND REPORTING REQUI	IREMENT
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language

For Water Systems Providing Ground Water as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLES					
Microbiological Contaminants (complete if fecal-indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	(In the year)		0	(0)	Human and animal fecal waste
Enterococci	(In the year)		TT	n/a	Human and animal fecal waste
Coliphage	(In the year)		J.i.	n/a	Human and animal feeal waste

Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT

SPECIAL N	OTICE OF FECAL INDI	CATOR-POSITIVE	GROUND WATER SOURCE S	AMPLE
	EDECIAL MOTICE FOR I	INCOPPECTED SIG	SNIFICANT DEFICIENCIES	
	PECIAL NOTICE FOR	SHOOKKECTED SIC	THE PERSON OF TH	
	VIOLA	TION OF GROUND V		
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language

For Systems Providing Surface Water as a Source of Drinking Water

TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES				
Treatment Technique (a) (Type of approved filtration technology used)				
Turbidity Performance Standards (b) (that must be met through the water treatment process)	Turbidity of the filtered water must: 1 - Be less than or equal to NTU in 95% of measurements in a month. 2 - Not exceed NTU for more than eight consecutive hours. 3 - Not exceed NTU at any time.			
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.				
Highest single turbidity measurement during the year				
Number of violations of any surface water treatment requirements				

- (a) A required process intended to reduce the level of a contaminant in drinking water.
- (b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.
- * Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below.

Summary Information for Violation of a Surface Water TT

TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
	-			

Summary Information for Operating Under a Variance or Exemption

2012 SWS CCR Form Revised Jan 2013